Compacte dubbelsterren en gravitatiegolven in ons heelal

Marc van der Sluys

Radboud Universiteit Nijmegen / Virgo hemel.waarnemen.com

Outline

Sterren en sterevolutie

- Evolutie van enkele sterren
- Dubbelsterevolutie en materie-overdracht
- Common-envelope evolutie
- 2

Dubbele witte dwergen

- Ontstaan en evolutie van dubbele witte dwergen
- Type-la supernovae

De detectie van gravitatiegolven

- Gravitatiegolven
- LISA
- LIGO/Virgo
- Gammaflitsers

Sterren en sterevolutie		Dubbele witte dwergen	De detectie van gravitatiegolven
De Zon			
		enter : en tradiciones en tradiciones	
Grootheid		Eenheid	Aarde
Massa	M_{\odot}	$1,99\times 10^{30}\text{kg}$	333 000 M_\oplus
Straal	R_{\odot}	696 000 km	109 R_\oplus
Dichtheid	$ar{ ho}_{\odot}$	1,4 g/cm ³	0,26 $ar{ ho}_\oplus$
Lichtkracht	L_{\odot}	$3,85\times10^{26}W$	\sim 3 $ imes$ 10 ⁹ " L_{\oplus} "
Temperatuur: Oppervlak Centrum	$T_{ m opp,\odot} \ T_{ m c,\odot}$	5500°C ∼ 14 × 10 ⁶ °C	15°C ∼ 7000°C

Hipparcos-catalogus

http://www.rssd.esa.int/index.php?project=HIPPARCOS

- 48 495 stars
- $\frac{\Delta d}{d} < 20\%$
- $\Delta(B-V) < 0.1 \text{ m}$

Hipparcos-catalogus

48 495 stars

•
$$\frac{\Delta d}{d} < 20\%$$

•
$$\Delta(B-V) < 0.1 \, \mathrm{m}$$

Evolutionary tracks
0.5 M_{\odot} – 80 M_{\odot}

Hoofdreekssterren

Eigenschappen van enkele sterren met zonne-metalliciteit, halverwege de hoofdreeks ($X_c = 0.35$):

M (M⊙)	age (Myr)	R (R⊙)	L (L⊙)	Т _s (К)	Т _с (МК)	Number density (w.r.t. 1 M_{\odot})
0.5	52 600	0.50	0.05	3860	9.8	7.07
0.8	11 600	0.79	0.38	5100	13.4	2.34
1.0	4900	1.01	1.05	5810	15.9	1.00
1.5	1660	1.95	6.75	6660	20.9	0.131
2.0	582	2.23	20.4	8230	22.5	0.0232
2.5	405	2.80	57.8	9530	24.1	9.59×10 ⁻³
3.0	246	3.09	120	10800	25.2	3.80×10 ⁻³
5.0	70.6	4.19	895	15 400	28.6	3.27×10^{-4}
10.0	12.7	5.74	8590	23 100	32.8	1.16×10 ⁻⁵
20.0	5.18	8.78	67 900	31 300	37.0	9.3×10 ⁻⁶
50.0	2.41	15.9	527 000	39 000	41.4	5×10 ⁻⁷

Sterren en sterevolutie

Dubbele witte dwergen

De detectie van gravitatiegolven

Evolutie van een ster van 1 zonsmassa

Fase:

Waterstoffusie 7 Heliumfusie 7

Temperatuur:

 $T \gtrsim 7$ miljoen K, $T \gtrsim 200$ miljoen K, Tijdschaal: $au \approx 7 + 4$ miljard jaar $au \approx 200 + 25$ miljoen jaar

Reacties: $4H \rightarrow He$ $3He \rightarrow C$, $C + He \rightarrow O$

Sterren en sterevolutie

Dubbele witte dwergen

De detectie van gravitatiegolven

Planetaire nevels

Planetary Nebula M2-9 PRC97-38a • ST Scl OPO • December 17, 1997 B. Balick (University of Washington) and NASA

Witte dwergen

- Sterren met $M \lesssim 8 10 M_{\odot}$, > 90% van alle sterren, worden WDs
- WDs bestaan meestal uit He of C+O
- Dichtheid van een WD \sim 1 miljoen keer die van water
- $M_{
 m wd} \lesssim 1.4~M_{\odot};~~\langle M_{
 m wd}
 angle pprox 0.6~M_{\odot}$
- $L_{
 m wd} \lesssim 0.001 \ L_{\odot}$

Sterren en sterevolutie

Dubbele witte dwergen

De detectie van gravitatiegolven

Uienschil-structuur voor zware sterren

Fusiestadia voor een 10 M_{\odot} -ster

Stage	Net reactions	Т (К)	au
Hydrogen burning	$\textbf{H} \rightarrow \textbf{He}$	> 7×10 ⁶	10 Myr
Helium burning	He $ ightarrow$ C,O	$>$ 2 \times 10 ⁸	1 Myr
Carbon burning	$\mathbf{C} ightarrow \mathbf{Ne}, \mathbf{Mg}$	$> 8 \times 10^{8}$	1 kyr
Neon burning	${ m Ne} ightarrow { m O,Mg}$	$> 1.5 \times 10^{9}$	1 month
Oxygen burning	$\mathbf{O} ightarrow \mathbf{Si,S}$	$> 2 \times 10^{9}$	2 years
Silicon burning	$\mathbf{Si} ightarrow \mathbf{Fe}, \mathbf{Ni}$	$>$ 3.3 \times 10 ⁹	3 days

Supernova

De detectie van gravitatiegolven

Relatie tussen ZAMS-massa en eindmassa

Dubbelsterren: Albireo

Roche lobes

$$\frac{R_{\rm Rl,i}}{a} \approx \frac{2}{3^{4/3}} \, \left(\frac{M_{(3-i)}}{M_{\rm T}}\right)^{1/3}$$

accurate within 1% for $q_i < 0.05$ (Paczyński, 1967).

$$\begin{split} \frac{R_{\mathrm{Rl,i}}}{a} &\approx \frac{0.49 \, q_i^{2/3}}{0.6 \, q_i^{2/3} + \ln\left(1 + q_i^{1/3}\right)}\\ \text{accurate within 1% for}\\ 0 &< q_i &< \infty \text{ (Eggleton,)} \end{split}$$

1983).

Van der Sluys (2006)

Sterren en sterevolutie

Dubbele witte dwergen

De detectie van gravitatiegolven

Conservative materieoverdracht

Common envelopes

- Core and companion spiral in, E_{orb} heats up and expels envelope
- $\tau \lesssim$ 1000 yr components do not change

Sterren en sterevolutie

Dubbele witte dwergen

De detectie van gravitatiegolven

Waargenomen dubbele witte dwergen

Waargenomen dubbele witte dwergen

System	Porb (d)	a_{orb} (<i>R</i> ⊙)	M ₁ (<i>M</i> ⊙)	M₂ (M _☉)	q ₂ (<i>M</i> ₂ / <i>M</i> ₁)	Δau (Myr)
WD 0135-052	1.556	5.63	0.52 ± 0.05	0.47 ± 0.05	0.90 ± 0.04	350
WD 0136+768	1.407	4.99	0.37	0.47	1.26 ± 0.03 1.13 + 0.02	450 325
WD 1101+364	0.145	0.99	0.33	0.29	0.87 ± 0.02	215
PG 1115+116	30.09	46.9	0.7	0.7	$\textbf{0.84} \pm \textbf{0.21}$	160
WD 1204+450	1.603	5.74	0.52	0.46	0.87 ± 0.03	80
WD 1349+144	2.209	6.59	0.44	0.44	1.26 ± 0.05	—
HE 1414–0848	0.518	2.93	0.55 ± 0.03	0.71 ± 0.03	1.28 ± 0.03	200
WD 1704+481a	0.145	1.14	0.56 ± 0.07	0.39 ± 0.05	0.70 ± 0.03	-20 ^a
HE 2209–1444	0.277	1.88	0.58 ± 0.08	0.58 ± 0.03	1.00 ± 0.12	500

^a Unclear which white dwarf is older

Sterren en sterevolutie

Dubbele witte dwergen

De detectie van gravitatiegolven

CE nodig om waargenomen systemen te verklaren

- Average orbital separation:
 - $\bullet~\sim 7\,R_\odot$
- Typical progenitor:
 - $R_* \sim 100 R_{\odot}$
 - $M_{
 m c}\,\gtrsim\,0.3\,M_{\odot}$

Sterren en sterevolutie

Dubbele witte dwergen

De detectie van gravitatiegolven

Results: example solution

Van der Sluys, 2006 rocheplot.sf.net

Maar...

- Alleen α-CE en conservatieve materie-overdracht kunnen DWDs niet verklaren
- γ -prescriptie fysisch niet bevredigend
- Oplossing (voor He-WDs): niet-conservatieve, stabiele materie-overdracht?

Populatiesynthese

Non-conservative MT

(van der Sluys et al., in preparation)

De detectie van gravitatiegolven

Populatiesynthese

De detectie van gravitatiegolven

Results: example solutions

rocheplot.sf.net

van der Sluys et al., in preparation

DWDs voorgangers van type-la supernovae?

SNIa scenarios:

- Single-degenerate: WD accreteert van 'normale ster' maar: H?
- Double-degenerate: WD accreteert van WD maar: aantallen?
- WD ontploft? / stort in? bij \sim 1.37 M_{\odot}

Sterren en sterevolutie

Dubbele witte dwergen

De detectie van gravitatiegolven

Type-la supernovae

Zeldzaam maar helder: zichtbaar van verre

Type-la supernovae

- Duur van het verval geeft absolute helderheid
- Schijnbare helderheid geeft afstand

Sterren en sterevolutie

Dubbele witte dwergen

De detectie van gravitatiegolven

SNela en de uitdijing van het heelal

- Gebruik SNeIa als 'standaardkaarsen' om uitdijing heelal te meten
- Moeten soorten SNela en variaties in lichtkracht goed begrijpen

DWDs als bronnen van gravitatiestraling

- DWDs kunnen worden waargenomen door LISA
- Nauwe systemen zijn waarschijnlijk op te lossen, de rest is 'voorgrondruis'

Gravitatiegolven

Gravitatiegolven

GWs:

- "Ripples in spacetime"
- Voorspeld door Einstein's Algemene Relativiteitstheorie

 Indirect waargenomen in de Hulse-Taylor binary pulsar:

⁽Breton et al., Science, 2008)

Electromagnetische en gravitatiegolven

EM golven ...

- bewegen zich door de ruimte-tijd
- worden incoherent geproduceerd door vele (kleine) atomen
- hebben een korte golflengte m.b.t. de afmeting van de bron
- maken gebruik van de relatief sterke EM-kracht
- hebben frequencies $\gtrsim 10^6$ Hz
- worden gemeten in energy $\rightarrow L(r) \sim 1/r^2$

Gravitatiegolven ...

- zijn golven in de metriek van de ruimte-tijd
- worden coherent geproduceerd door een paar grote massa's
- hebben een lange golflengte m.b.t. de afmeting van de bron
- maken gebruik van de zwakke zwaartekracht
- hebben frequencies $\leq 10^3$ Hz
- worden gemeten in amplitude $\rightarrow L(r) \sim 1/r$

Waarom GWs detecteren?

Fysica:

- Directe meting van GWs en verificatie van ART
- Directe waarneming van zwarte gaten
- Verifiëer dat GWs met de lichtsnelheid bewegen, d.w.z. dat de rustmassa van het graviton 0 is
- Verifiëer dat GWs transversaal zijn, d.w.z. dat de spin van het graviton 2 is

Waarom GWs detecteren?

Astrofysica:

- Geheel nieuw venster op het heelal!
- Neutronensterren uiteengerukt zien worden, hun implosie tot zwart gat waarnemen
- Zwarte gaten die neutronensterren 'opeten', BH-BH botsingen
- De instorting van de kernen van zware sterren (core-collapse supernovae)
- 'Heuvels' op pulsars
- Oer-zwarte gaten om de Oerknal ditect te bestuderen
- The unexpected...

Waarom GWs detecteren?

Evolutie van dubbelsterren:

- BH/NS massaverdelingen, BH spins en spinorientatie
- Aantallen mergers, NS-NS/BH-NS/BH-BH merger-ratio's
- Zwaartekracht in het sterke regime; toestandsvergelijking van NSs
- Associatie van GW en EM events, b.v. gamma-ray bursts
- Evolutie van massieve sterren (in dubbelsterren), CEs
- Supernova-explosies van zware sterren
- Initiële-massa-verdelingen voor BH voorgangers

Eigenschappen van gravitatiegolven

Gravitatiegolven...

- propageren transversaal met de lichtsnelheid
- zijn quadrupoolstraling in de eerste orde
- rekken en drukken de ruimte-tijd in twee polarisaties
- laten ons hun amplitude meten

• Strain: $h(t) = h_+(t)F_+(t) + h_\times(t)F_\times(t) = \frac{\delta L(t)}{L} \sim 10^{-22}$

De detectie van gravitatiegolven

Laser Interferometer Space Antenna (LISA)

Laser Interferometer Space Antenna (LISA)

Missie

- $\bullet \ LISA \rightarrow eLISA \, / \, NGO$
- 3 ruimtevaartuigen, met in totaal 6 testmassa's
- Detector is in een baan om de Zon, 20° achter de Aarde
- Driehoeksopstelling, met armen van 5 miljoen km
- 1 Watt lasers tussen de componenten
- Gevoellig in lage frequenties: 0.03 mHz 0.1 Hz
- Missieduur \geq 5 jaar
- LISA Pathfinder moet technologie testen/bewijzen
- Project uitgesteld ten gunste van Juice (Ganymedes), mei 2012
- Lancering \gtrsim 2028?

Laser Interferometer Space Antenna (LISA)

Waarnemingen

- Galactische dubbele witte dwergen
- Supermassieve zwarte gaten (SMBHs) in de kernen van botsende sterrenstelsels
- Vangst van compacte objecten door SMBHs
- Kosmische strings?
- Fase-overgangen in het vroege heelal?

Nauwkeurigheid

- Massa's van SMBHs ($10^4 10^7 M_{\odot}$) tot $\sim 0.1 10\%$
- Posities: enkele graden
- Directe afstandsmeting: $\sim 1 10\%$

LISA verification binaries

(Nelemans, 2005)

De detectie van gravitatiegolven

Properties of AM CVn and SDSS J 0651+2844

Sterren en sterevolutie

Dubbele witte dwergen

De detectie van gravitatiegolven

Improvement in amplitude uncertainties

De detectie van gravitatiegolven

Laser Interferometer GW Observatory (LIGO)

LIGO/Virgo

- LLO: Livingston, Louisiana (L1: 4 km)
- LHO: Hanford, Washington (H1: 4 km, H2: 2 km)
- Virgo: Pisa, Italy (V: 3 km)
- KAGRA: Japan (2018+?, 4 km)
- Indigo: India (2018+?, 4 km)
- Michelson interferometers
- Frequency sensitivity: $f \sim 40 1600 \, \text{Hz}$
- $\delta L = 10^{-22} \times L \approx 10^{-16} \, \mathrm{cm}$ (atomic nucleus $\sim 10^{-13} \, \mathrm{cm}$)

LIGO/Virgo collaboration (LVC):

- Data sharing since spring 2007
- Working groups:
 - Compact binary coalescences
 - Bursts
 - Continuous waves
 - Stochastic background

Inspiral waveforms met toenemende spin

LIGO and Virgo detect the last \sim 10 s of a binary inspiral:

Voorspelde detectie-aantallen voor CBCs

Horizonafstanden (Mpc):					
		NS-NS	BH-NS	BH-BH	
	Initial LIGO/Virgo	33	70	161	
	Advanced LIGO/Virgo	445	927	2187	

Schatting van detectie-aantallen (jr ⁻¹):					
	NS-NS	BH-NS	BH-BH		
Initial LIGO/Virgo Advanced LIGO/Virgo	$2 \times 10^{-4} - 0.2$ 0.4 - 400	$7 \times 10^{-5} - 0.1$ $0.2 - 300$	$2 \times 10^{-4} - 0.5$ 0.4 - 1000		

Schattingen gaan uit van $M_{\rm NS} = 1.4 \, M_{\odot}$ en $M_{\rm BH} = 10 \, M_{\odot}$ Abadie et al., 2010

Toevoegen van een signaal in de detectorruis

Example:

- Using two 4-km detectors H1, L1
- Gaussian, stationary noise or LIGO/Virgo detector data
- Do software injections
- Retrieve physical parameters
- ΣSNR = 17

De detectie van gravitatiegolven

Analyse van een BH-NS signaal

Parameters:

- H1, L1, V
- *M* = 10, 1.4 *M*_☉
- $d_L = 22.4 \, \text{Mpc}$
- $a_{\rm spin} = 0.8$, $\theta_{\rm SL} = 55^{\circ}$
- $\Sigma SNR \approx 17.0$
- simulated noise
- Black dash-dotted line: injection
- Red dashed line: median
- Δ's: 95% probability

+107

ε,

Dubbele witte dwergen

De detectie van gravitatiegolven

Hemelpositie voor signalen met en zonder spin

Spinning BH, non-spinning NS: $10 + 1.4 M_{\odot}$, 16–22 Mpc, Σ SNR=17

2 detectors, $a_{\rm spin} = 0.0$ 2- σ accuracy: 821°²

3 detectors, $a_{spin} = 0.5$ 2- σ accuracy: 40^{°2}

van der Sluys et al., 2008; Raymond et al., 2009

Short-hard gamma-ray bursts (shGRBs)

Artist's impression van een GRB (bron: NASA)

Gammaflitsers:

- ho \sim 2 per dag
- ho \sim 25% short GRB
- duur: $\sim 10 \, \text{ms} 10 \, \text{s}$
- $\sim 10^{44}$ W, circa 1 miljoen sterrenstelsels
- straling gebeamed door emissie in jets
- long GRBs gerelateerd aan supernovae
- short GRBs veroorzaakt door NS-NS en NS-BH mergers?
 - oude sterpopulaties
 - energie
 - frequentie

De detectie van gravitatiegolven

Short-hard gamma-ray bursts (shGRBs)

- Gebruik LIGO/Virgo trigger om *GRB afterglow te vinden*
- Gebruik GRB positie en afstand voor nauwkeuriger LIGO/Virgo analyse

